

ALMIG COMPRESSED AIR TREATMENT

 + Generation ar and perfectly 	nd treatment: Everything from a sir matched	ngle source						
+ ALMiG covers products.	s the entire range of compressed a	air treatment						
+ ALMiG can pr treatment pro	rovide the right kind of compresse duct for every requirement profile	d air 9.						For pres
Highly versatile				Reliable and			0	points of -70°C Adsorption
FILTERS AFP. AFM. AFS. A	FC						Compact and	ALM-CD / ALM
p. 4	Re	liahle		DRYER ALM				p. 18
	CO	indensate		p. 12			ADD	
	dr	ain					p. 16	
		NDENSATE DRAIN 1-D						
ALMIG	p. 8							
			X	1230				E
			1	A CONTRACTOR OF A	982			8
100					Ę			AUTI-C
		ALMIG	ALMIN					
	T 91						ALMIG	ALTRIG
T					ALMIG	10		
			~		1			00
			For oil-free					
	Efficient		condensate			Energy-s	saving	
	pre-separation		OIL/WATER SEPARATOR			compres	sed air	
	of condensate		ALM-OWS			drying		
	AS Cyclone separator		p. 10			REFRIGERATIO	N DRYER	
	p. 6					p. 14		

3 ALMiG treatment products

sure dew f down to

DRYER I-CCD

For oil-free & taste-neutral compressed air

ACTIVE CARBON ADSORBER ALM-AC

Very efficient at high performance levels

ALMIG

ADSORPTION DRYER ALM-WD

p. 20

AFP, AFM, AFS, AFC **FILTERS**

Compressed air filters quarantee clean compressed air to satisfy very stringent requirements.

They can be used in a multitude of applications - wherever compressed air is required clean, dry or free of oil aerosols. It's a huge undertaking, especially when you consider the fact that more than two billion particles and liquid molecules can be present in 1 m³ of compressed air at a compression end pressure of 10 bar.

This is an undertaking to which the ALMiG heavy-duty filters are perfectly suited.

AFC

Equipment features:

.

- Standard version including differential pressure indicator and float drain
- Premium version including
- differential pressure gauge to display the most cost-effective time to replace the filter element
- · electronically controlled condensate drain to discharge condensate without any loss of compressed air
- Three-part housing with bayonet lock for simple replacement and installation of the filter elements
- Extremely light aluminium housing with threaded con-• nection for volume flows of 30 - 3300 m³/h
- Alternatively, as of volume flows of 2760 13750 m³/h, steel housing with flange connection

not present³

			SLEET HOUSING V	with hange connection
e optimum filter f	or every requ	irement		
Filter type	Туре	Particle size	Residual oil con- tent ¹	Residual water content ² (in liquid form)
				1.2
Pre-filter	AFP	5	-	present
Micro filter	AFM	1	0.1	not present ³
Sub microfilter	AFS	0.01	0.01	not present ³

0.003

at inlet concentration of 3 mg/m³ details relate to a station with no up stream compressed air drying the compressed air no longer contains residual water in a liquid form if the emperature is not reduced downstream of the filter elements (air is 100% saturated)

The optime

Active carbon filter

Filter with	threaded	connectio	n						
Туре ЛЕР ЛЕМ	Volun	ne flow		Standa	ard version ¹		Pre	mium version ²	
AFS, AFC	Nom.	Max.	Connection	Width	Height	Weight	Width	Height	Weight
	m³/h	m³/h				kg			kg
30	30	37	3/8"	90	233	0.7	90	367	1.0
60	60	75	1/2"	90	233	0.7	90	367	1.0
108	108	135	3/4"	90	293	0.8	90	427	1.1
180	180	225	3/4"	90	293	0.8	90	427	1.1
204	204	255	1"	120	328	1.2	120	452	1.5
300	300	375	1"	120	328	1.3	120	452	1.6
432	432	540	1 1/2"	120	408	1.4	120	532	1.7
570	570	710	1 1/2"	120	408	1.5	120	532	1.8
750	750	935	2"	165	523	3.8	165	647	4.1
990	990	1235	2"	165	523	3.9	165	647	4.2
1140	1140	1425	2 1/2"	165	698	4.9	165	822	5.2
1320	1320	1650	2 1/2"	165	698	5.0	165	822	5.3
1680	1680	2100	3"	200	735	6.8	200	857	7.1
2100	2100	2625	3"	200	888	8.0	200	1012	8.3
2640	2640	3300	3"	200	1008	8.0	200	1122	9.2

All details relate to 1 bar (abs), 20°C, 70% RH; ¹ Aluminium housing with threaded connection including float drain and differential pressure indicator

Aluminium housing with threaded connection including electronically controlled condensate drain and differential pressure gauge, operating pressure: 16 bar., operating temp.: min. +1 °C, max. +100 °C (60 °C)

Application Industry

Volume flows 30 - 13750 m³/h Operating temperatures Minimum: +1 °C Maximum: +100 °C

Conversion factors for other operating overpressures

Max.

3450

5250

7125

9375

11625

Connection

PN 40

PN 40

PN 40

PN 40

PN 40

The volume flows stated relate to a pressure of 7 bar. Volume flows for deviating pressures can be calculated with the correction factors. Volume flow configuration

The volume flow through the filter element should be between 50% and 100% of the nominal volume flow. Running above or below this, impacts negatively on filter efficiency. The maximum volume flow must not be exceeded.

All details relate to 1 bar (abs), 20 °C, 70% RH.

Filter with flange connection

Nom.

2760

4200

5700

7500

9300

Type AFP, AFM, AFS,

AFC.

2760

4200

5700

7500

9300

Steel housing with flange connection including float drain and differential pressure indicator ² Steel housing with flange connection including electronically controlled condensate drain and differential pressure gauge, operating pressure: 12 bar, operating temp.: min. +1 °C, max. +66 °C

Standard

Width

485

630

630

676

724

Differential pressure gauge

Extremely light aluminium housing

- + Three-part housing for simple replacement of filter elements
- Available as standard or premium

AFP, AFM, AFS, AFC filters

Heavy-duty filter element

andar	d vers	sion ¹					Pr	emiun	n versio	n²
Heigl	nt	1	Weigh	it	V	Vidth		He	ight	Weight
mm			kg			mm		п	nm	kg
1139	9		125		4	485		11	139	125
1130)		196		6	630		11	30	196
123	5		210		6	630		12	235	210
127	7		264		6	676		12	277	264
132	0		314		7	724		13	320	314
133	0		320		7	724		13	330	320
8	9	10	11	12	13	14	15	16		
1.1	1.2	1.4	1.5	1.6	1.75	1.9	2	2.1		

CYCLONE SEPARATOR AS

The cyclone separators are developed for treating compressed air in industrial areas of use. They are used to remove liquid water from the compressed air, that is drawn in the ambient air due to air humidity and precipitates in the aftercooler. This condensate also contains particles of dirt and aerosols.

It is always a good idea to use a cyclone separator when a refrigeration dryer is installed directly downstream of the compressor so that less condensate precipitates in the refrigeration dryer.

The high centrifugal forces in the cyclone separator cause the water and particles of dirt to be "slung" against the inner wall, from where they slide into a collecting space. The conical shape of the lower filter housing section means that separated-out aerosols cannot be swept up.

The turbulence-free zone in the lower part of the filter housing prevents condensate already separated in the wet area being swept up again by the air flow.

Due to their optimised design, the three-part housings with twist insert deliver low differential pressures at high flow rates.

As an option, the cyclone separators are also available in a premium version with electronic condensate drain.

Equipment features:

- Standard version including float drain
- · Premium version including electronically controlled condensate drain to discharge condensate without any loss of compressed air

AS TYPE

30

60

180

300

570

990

1320

2700

2400

3000

6600

7500

12000

Cyclone separator - premium version

37

75

225

375

710

1235

1650

2760

3450

7500

8630

12000 13800

2700 3375

3/8"

1/2"

3/4"

1"

1 1/2"

2"

2 1/2"

3"

DN 100

DN 125

DN 150

DN 175

DN 200

Volume flow

30

60

180

300

570

990

1320

2400

3000

6600

7500

	Cyclon	e separa	ator				
	AS TYPE	Volun	ne flow	Connection	Width	Height	Weight
		Nom. m³/h	Max. m³/h				kg
	30	30	37	3/8"	90	220	0.6
~ u	60	60	75	1/2"	90	220	0.6
sing ectio	180	180	225	3/4"	90	280	0.7
nun o	300	300	375	1"	120	310	1.1
nium led o	570	570	710	1 1/2"	120	390	1.3
lumi Iread	990	990	1235	2"	165	505	3.6
₽₽	1320	1320	1650	2 1/2"	165	680	4.7
	2700	2700	3375	3"	200	718	6.2
_ uo	2400	2400	2760	DN 100	420	1030	41
sing	3000	3000	3450	DN 125	445	1040	55
hou	6600	6600	7500	DN 150	523	1095	81
steel	7500	7500	8630	DN 175	606	1180	117
fla	12000	12000	13800	DN 200	657	1275	157

All details relate to 1 bar (abs) 20 °C 70% BH

Application Industry 30 - 13800 m³/h Minimum: +1 °C Maximum: +66 °C

Three-part housing resulting in low differential pressures

Volume flows Max. operating pressure 16 bar Operating temperatures

Connection Width Height Weight

90

90

90

120

120

165

165

200

420

445

523

606

657

295

295

355

380

460

575

750

785 940

950

1005

1090

1185

0.8

0.8

0.9

1.3

1.5

3.8

4.9

6.4

41

55

81

117

157

- Low differential pressures with high
- + Separated-out aerosols cannot be
- + Available as standard or premium

Heavy-duty cyclone separator

AS cyclone separator

ALM-D CONDENSATE DRAIN

You cannot avoid producing condensate when generating compressed air. The condensate contains oil and particles of dirt and may cause corrosion in the receiver, compressed air lines and on the consumer if not reliably drained. The ALM-D condensate drains from ALMiG deliver reliable condensate drainage. Avoiding compressed air losses can result in huge energy savings.

Level-controlled condensate drain ALM-D 10

The ALM-D 10 is a level-controlled condensate drain without compressed air losses for smaller compressed air systems. The ALM-D 10 features a reliable, directly controlled valve with FPM seal and covers pressure ranges of between 0 and 16 bar (up to 230 PSI).

With an inlet height of just 74 mm, the ALM-D 10 is a very compact solution offering unique installation flexibility and reliability.

Given its very compact size and low weight of less than 500 grammes, it is typically used in refrigeration dryers and filters. The maximum compressor capacity of this drain is 10 m³/min (350 CFM).

Equipment features:

- Compact solution with no compressed air losses.
- Very light.
- One model covers all capacities up to a compressor capacity of 10 m³/min.
- The inlet height of just 74 mm makes for simple installation.
- The fact that the valve is located externally means that maintenance is quick and easy.
- Robust, corrosion-resistant aluminium housing.
- Integrated clever valve self-cleaning mode.
- Voltage options: 230/115/24 VAC, 24 VDC.
- DIN 43650-B plug connection.
- IP65 protection class.

Electronically level-controlled condensate drain ALM-D 100

The ALM-D 100 removes all kinds of condensate from compressed air systems of up to 100 m³/min without any air losses.

The compact and robust aluminium housing, the 2/2-way directly controlled valve with a large aperture and the integrated strainer make the ALM-D 100 the most reliable solution available for all compressed air solutions.

Equipment features:

- Compact solution with no compressed air losses.
- Alarm function (NO or NC) integrated as standard.
- Capacitive level control technology saves compressed air, energy and money.
- Robust, corrosion-resistant aluminium housing, EP paintwork.
- Directly controlled valve ensures a reliable condensate drain.
- Integrated stainless steel strainer.
- Voltage options: 230/115/24 VAC, 24 VDC.
- DIN 43650-B plug connection.
- IP65 protection class.

Industry Max. compressor capacity ALM-D 10: 10 m³/min

Application

ALM-D 100: 100 m³/ min Min./max. System pressure 0 - 16 bar Valve type 2/2-way, directly controlled valve aperture

ALM-D 100: 4 mm Inlet / outlet 1/2" inlet union /

ALM-D 10: 2 mm

1/4" outlet union Medium temperature / ambient temperature $1 - 50 \ ^{\circ}C$

- + Incredibly compact
- + Corrosion-resistant aluminium housing
- + Condensate drain free of compressed air losses
- + Unique installation flexibility and reliability

ALM-D 100

OIL-WATER SEPARATOR ALM-OWS

Condensate is produced when generating compressed air. This condensate is contaminated with oil, which is drawn in from the surrounding air and used in the compressor stage for cooling. Because the contaminated condensate must not be discharged into the sewer system, it has to be separated from the oil.

The ALM-OWS series of oil-water separators reliably removes oil from any condensate produced in compressed air systems.

In order to reliably separate the oil from the water, the condensate passes through several stages of separation and is filtered by several filter elements.

The oil-adsorbing elements combine various kinds of adsorption technology to achieve a residual oil content of less than 10 ppm.

The first oil-adsorbing element has a saturation indicator and provides an optical check, allowing the separator to be monitored visually (even from a distance). The combinations of elements are always analysed and put together on the basis of the latest range of adsorption technologies.

The last stage contains specially selected active carbon for separating the remaining contaminants.

Equipment features:

- Quick and easily replacement of elements.
- Several condensate inlets.
- Test bottle and test drain for taking samples.
- Use of heavy-duty filter elements.
- Simple, guick and clean installation and replace-• ment process.
- Successful separation of mineral oil, synthetic oil and stable condensate emulsions by heavy-duty elements - for maximum reliability.
- Brass hose humps ensure quick and easy installation and maintenance.
- Simple to dispose of in line with environmental requirements.
- All types and designs of condensate drain can be used.
- Compact design and small footprint.

ALIVI-U	w2						
ТҮРЕ	Compressor capacity	Max. oil absorp- tion of elements	Heavy-duty elements	Active carbon elements	Overflow warning indicator	Indicator showing element's service life	Maintenance drain valve
	m³/min	Litres					
02	2	2	1	1	No	No	No
05	5	5	2	1	Yes	Yes	No
10	10	10	2	1	Yes	Yes	Yes
20	20	15	2	1	Yes	Yes	Yes
30	30	25	2	1	Yes	Yes	Yes
60	60	50	2	2	Yes	Yes	Yes

Optical display Separator can even be

monitored from a distance

Achievable residual oil content

Maximum compressor capacity

condensate emulsions

2 - 60 m³/min

<10 ppm

Separation of

mineral oil

synthetic oil

Input connection

1/2" (2")

Output terminal

1"

to simply empty the individual towers

- synthetic oil and stable condensate

ALM-OWS 60

REFRIGERATION **DRYER ALM**

Refrigeration dryers are important in cases where you need dry compressed air to protect against corrosion in reliability at inlet temperatures of up to +55 °C and a presthe compressed air lines and on the compressed air consumer.

The refrigeration dryers remove the air humidity from the air by cooling it so that the water precipitates as condensate.

The powerful refrigeration dryers of the ALM series have proven themselves in countless applications.

ALM refrigeration dryer

They deliver impressive value for money and operational sure dew point of +3 °C.

The series also features very large heat exchanger surfaces, guaranteeing a constant pressure dew point and good water separation even under extreme operating conditions.

Application Industry Power consumptio 0.24 - 13.4 kW Volume flow 20 - 5100 m³/h

Integrated

demister separator

If pressures or temperatures deviate, multiply volume flow by the following conversion factors (f, and f, i):

Correction factors for volum	e flow	for A	LM 25	- 530	0* <mark>ref</mark> i	rigera	atio
Ambient temperature t _u (°C)					25		30
Correction factor F_{c2} -f _{tu}					1	0	.94
Operating overpressure pü (bar)	3	4	5	6	7	8	9
Correction factor F_{c1} -f _{pü}	0.79	0.87	0.92	0.96		1.03	1.0
If operating pressures deviate, mul	tiply p	ressure	e loss l	by the t	follow	ing co	nve

Correction factors for pressure loss for refrigeration dryer ALM 25

(bar)						
Correction factor F_{c1} -f	2.3	1.8	1.5	1.3	1.1	0.9

*No correction factor is needed with the ALM25 - ALM110 models for deviating ambient temperatures.

Operating overpressure pü

ALM TYPE	Volume flow*	Cooling air requirement	Compressed-air con- nection	Power consumption	Width	Height	Depth	Weight
	m³/h	m³/h		kW				kg
25	20	-	3/8"	0.24	384	382	320	15
35	30	-	3/8"	0.24	340	382	320	19
65	60	-	3/4"	0.34	368	568	419	29
85	80	-	3/4"	0.42	368	568	419	29
110	100	-	3/4"	0.58	500	568	525	41
150	140	1020	1"	0.58	393	601	891	50
180	160	1020	1"	0.60	393	601	891	53
260	240	1020	1"	0.87	393	601	951	58
350	315	1980	2"	1.10	483	761	1011	72
400	360	1980	2"	1.30	483	761	1011	78
500	470	2640	2"	1.48	483	761	1011	86
640	580	2640	2"	1.90	533	811	1191	100
740	680	4500	2"	2.45	533	811	1191	112
900	820	4500	2"	2.55	533	811	1291	134
1100	1000	4500	2"	2.70	533	811	1291	155
1320	1200	3500	2 1/2"	2.55	1129	1510	857	314
1530	1400	4400	2 1/2"	2.95	1129	1510	857	327
1850	1700	4500	3"	5.70	1110	1510	857	354
2150	2000	5000	3"	5.80	1110	1510	857	384
2400	2200	6500	DN 100	5.50	1243	2116	1386	690
2650	2500	9900	DN 100	7.00	1243	2116	1386	690
3550	3200	9900	DN 150	8.70	1400	2112	1584	880
4000	3650	10800	DN 150	9.20	1400	2112	1584	880
4900	4600	11400	DN 150	10.80	1400	2112	1584	1050
5300	5100	16200	DN 150	13.40	1400	2112	1584	1200

Pressure dew point of +3 °C based on ambient temperature of +25 °C and compressed air inlet temperature of 35 °C at 7 bar (overpressure); refrigerant: R 134 a, R 407 c, R 404 a *at maximum throughput (100%)

- + Great value for money

0

d	ryers					
	35	40		45		
	0.89	0.8	3 0	.78		
	10	11	12	13	14	
7	1.1	1.13	1.16	1.18	1.21	
sic	on facto	ors (f _{dp}):			
-	5300					
	10	11	12	13	14	
8	0.75	0.7	0.65	0.62	0.6	

ALM 150

ALM 1530

ALM 2400

REFRIGERATION **DRYER ALM-E**

frigeration dryer.

Energy-saving refrigeration dryer ALM-E 140 - 1000 The ALM-E series provides cost-effective energy savings as the amount of power used is directly related to the air requirement. Linear load adaptation is achieved with a requirement of 0% to 100%.

Dryers in the ALM-E series are equipped with 3-in-1 heat exchangers and a Phase Change Material (PCM) encapsulated between the refrigeration and compressed air circuits, which serves as a highly efficient cooling reservoir.

The ALM-E refrigeration dryers automatically switch the refrigeration compressor on or off in response to the prevailing load statuses. With partial volume flows (partial load), the energy needed to dry the air is taken from the cooling reservoir.

Energy-saving refrigeration dryer ALM-E 1320 - 5300 Speed control is integrated in refrigeration dryer ALM-E 1320 - 5300. The energy requirement of the ALM-E series is thereby adapted to the compressed air volume in the reApplication

Industry

Power consum

0 - 13.4

Volume flow

127 - 5100 m³/h

This delivers a potential energy saving of up to 50% with a stable pressure dew point.

ALM-E energy-sa	ving refrigeration dr	yer					
ALM-E TYPE	Volume flow	Compressed-air connection	Power consumption	Width	Height	Depth	Weight
	m³/h		kW				kg
140	127	1"	0 - 0.43	324	751	562	62
180	170	1"	0 - 0.43	324	711	741	69
280	255	2"	0 - 0.59	404	761	861	81
370	340	2"	0 - 0.85	404	761	921	82
560	509	2"	0 - 1.3	454	911	1071	126
750	680	2"	0 - 1.66	454	911	1071	153
1000	935	2"	0 - 2.0	450	1031	1160	178
1320	1200	2 1/2"	0.8 - 2.1	1129	1510	857	330
1530	1400	2 1/2"	0.8 - 2.7	1129	1510	857	345
1850	1700	3"	1.5 - 4.3	1110	1510	857	370
2150	2000	3"	1.5 - 5.2	1110	1510	857	400
2400	2200	DN 100	2.0 - 5.3	1243	2116	1386	715
2650	2500	DN 100	2.0 - 6.7	1243	2116	1386	715
3550	3200	DN 150	3.1 - 8.6	1400	2112	1584	910
4000	3650	DN 150	3.1 - 9.2	1400	2112	1584	910
4900	4600	DN 150	3.9 - 10.5	1400	2112	1584	1090
5300	5100	DN 150	39-134	1400	2112	1584	1240

Fig.: ALM-E 140-1000 series (by way of example)

If pressures or temperatures deviate, multiply volume flow by the following conversion factors (f, and f,):

Correction factors for volume flow for ALM 140 - 5300 refrigeration dryers												
Ambient temperature T _u (°C)	Ambient temperature T_{u} (°C)						30	35		40	45	
Correction factor F _{c2} - f _{Tu (models > 1000 m}				0.94	0.8	9	0.83	0.78	3			
Correction factor F_{c2} - $f_{Tu (models < 1000 m)}$	/h)						0.92	0.8	5	0.8	0.78	3
Operating overpressure pü (bar)	3	4	5	6	7	8	9	10	11	12	13	14
Correction factor F_{c1} -f_{pu}	0.79	0.87	0.92	0.96		1.03	1.07	1.1	1.13	1.16	1.18	1.2

If operating pressures deviate, multiply pressure loss by the following conversion factors (f,,):

Correction factors for pressure loss for refrigeration dryer ALM 140 - 5300															
Operating overpressure pü (bar)	2	3	4	5	6		8	9	10	11	12	13	14	15	16
Correction factor F_{c1} -f _{dp}	2.3	1.8	1.5	1.3	1.1		0.9	0.8	0.75	0.7	0.65	0.62	0.6	0.55	0.52

3-in-1 heat exchanger

made from soldered stainless steel with phase change material reservoir

guide

upwards

- Energy savings of up to 90%
- Energy-saving thanks to use of Phase Change Material (PCM) and/or speed
- Constant pressure dew point

REFRIGERATION DRYER ADD

The refrigeration dryers of the ADD series can be used flexibly in numerous applications and can be accommodated anywhere thanks to their compact design. Can be used

- as a stand-alone unit
- for wall mounting or
- as part of a set (compressor plus refrigeration dryer)

These refrigeration dryers cut your production costs and improve productivity.

A powerful, three-stage heat exchange system guarantees reliable dryer operation up to an inlet temperature of +55 °C and a pressure dew point of +3 °C.

Advantages:	
-------------	--

- Compact and space-saving
- Variable pressure dew point, can be set using microswitch
- Low maintenance costs
- Simple installation / operation
- Constant pressure dew point

Conversion factors:

In accordance with DIN ISO 7183, refrigeration dryers are designed for an operating overpressure of 7 bar, an ambient temperature of 25 °C and an inlet temperature of 35 °C. The conversion factors provided below apply at deviating operating pressures and temperatures.

ADD refrige	ration dryer			
ADD TYPE	Volume flow	Cooling air requirement	Compressed air connection	Power consumption
	m³/h	m³/h		kW
23	23	300	1/2"	0.18
50	50	300	3/4"	0.20
69	69	540	3/4"	0.29
96	96	540	3/4"	0.47
140	140	720	1"	0.61
150	150	720	1"	0.61
204	204	800	1"	0.86
310	310	2300	1 1/2"	1.04

If pressures or temperatures deviate, multiply volume flow by the following conversion factors (f, and f, i):

Correction factors for volume flow for ADD refrigeration dryers															
Operating overpressure pü (bar)	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Correction factor F_{c1} - $f_{p\bar{u}}$	0.6	0.7	0.78	0.86	0.94	1	1.06	1.11	1.15	1.19	1.22	1.24	1.25	1.26	1.26
Ambient temperature t _u (°C)						25	30	35	40						
Correction factor F_{c2} -f _{tu}							0.97	0.93	0.88						
operating pressures deviate, multiply pressure loss by the following conversion factors (f_{do}):															
Correction factors for a	****	** • •	o for l		frino	ration	davo	10							

Correction factors for pressure loss for ADD refrigeration dryers															
Operating overpressure pü (bar)	2	3	4	5	6		8	9	10	11	12	13	14	15	16
Correction factor F _{c1} -f _{dp}	2.3	1.8	1.5	1.3	1.1	1	0.9	0.8	0.8	0.7	0.7	0.6	0.6	0.6	0.5

Pressure dew point of +3 °C based on ambient temperature of +25 °C and compressed air inlet temperature of 35 °C at 7 bar (overpressure); refrigerant: R 134 a

Application

Industry Power consumption

0.18 - 1.04 kW Volume flow 23 - 310 m³/min

Simple operation

Powerful heat exchange system

Can be used

flexibly

- + Reliable and low-maintenance
- + Footprint of less than 1 m² is needed
- Low noise level thanks to exceptional acoustic insulation

"PLUS" variant with coupled compressed air refrigeration dryer, can also be produced at later date for selected series (on request)

ALM-CD / ALM-CCD **ADSORPTION DRYER**

Adsorption dryers are used in cases where drier compressed Design: air is needed than can be achieved with a refrigeration dryer. In these dryers, the water vapour is deposited on and bound to a desiccant and the humidity thereby removed from the compressed air. The cold-regenerative ALM-CCD/-CD adsorption dryers are used wherever compressed air is being dried to a pressure dew point of -20 °C, -40 °C or −70 °C.

The series offer a compact design and a simple operation.

$V_{nom} = 2000 \text{ m}^3/\text{h}$
Inlet temperature = 30 °C
Operating overpressure = 10 bar
Inlet temperature = 30 °C Operating overpressure = 10 bar

f_n • f_r

 $V_{corr} = \frac{2000 \text{ m}^3/\text{h}}{1.18 \cdot 1.05} = 1615 \text{ m}^3/\text{h}$

Calculated dryer size: ALM-CD 1900

ALM-CCD /	ALM-CD						
ТҮРЕ	Nominal throughput at inlet ¹	Average controlled air flow – -40 °C	Width	Height	Depth	Weight	Connection
ALM-CCD	m³/h	m³/h	mm	mm	mm	kg	G
10	9	1.8	516	775	157	29	R3/8"
20	17	3.4	516	775	157	37	R3/8"
30	25	5	516	775	157	51	R3/8"
40	35	7	669	775	208	69	R3/8"
50	45	9	669	775	208	71	R1/2"
ALM-CD							
110	100	15	750	1950	750	180	R3/4"
170	160	24	750	1950	750	220	R3/4"
320	300	45	1150	1980	750	400	R1"
430	400	60	1150	1980	750	430	R1 1/2"
650	600	90	1150	1990	750	540	R1 1/2"
800	750	113	1150	1990	750	645	R2 "
1000	950	143	1150	2000	750	815	R2"
1200	1150	172	1500	1930	1300	1020	DN 80
1600	1450	217	1500	1950	1400	1275	DN 80
1900	1750	262	1500	2070	1450	1430	DN 80
2300	2100	315	1500	2090	1500	1650	DN 80
2600	2450	367	1500	2190	1700	2000	DN 80
3000	2800	420	1700	2220	1750	2300	DN 80
4000	3700	555	1950	2300	1900	3230	DN 100
6200	5800	870	2400	2500	2040	4500	DN 100
8000	7500	1125	2690	2610	2300	5750	DN 150
10000	0400	1410	2020	2510	2560	6900	DN 150

¹Refers to intake status of 1 bar (abs) and 20 °C, 7 bar (overpressure) and 35 °C inlet temperature, pressure dew point -40 °C;

Pressure dew point: ALM-CCD –40 °C at 100%, -70 °C at approx. 85% nominal load; ALM-CD –20 °C, -40 °C, -70 °C at 100% nominal load; operating overpressure: ALM-CCD 3 - 10 bar; ALM-CD 4 - 10 bar; ALM-CD 4

Application Industry Pressure dew point ALM-CCD: -40 °C, -70 °C ALM-CD: -20 °C, -40 °C, -70 °C Nominal throughput at inlet up to 9400 m³/h Operating pressure 4 - 16 bar Ambient temperature +5 °C to +50 °C

Alternating regenerating receivers

Correction factor	rs for	ALN	1-CC	CD a	dsor	ption	dry	er	Correction factors for ALM-CD adsorption dryer													
)perating overpres- ure pü (bar)	3	4	5	6		8	9	10	Operating overpres- sure pü (bar)	4	5	6		8	9	10	11	12	13	14	15	16
Correction factor f _{pū}	0.25	0.39(0.56	0.77		1.13	1.25	1.38	Correction factor ${\rm f}_{\rm pu}$	0.78	0.86	0.93		1.06	1.12	1.18	1.23	1.28	1.33	1.38	1.43	1.47
nlet temperature " (°C)	10) 2	0 :	30		40	45	50	Inlet temperature T (°C)	10	20	30	35	40	45	50						
correction factor f_{T}	1	1		1		0.98	0.94	0.88	Correction factor f_{T}	1.33	1.17	1.05		0.96	0.92	0.89						

- + Compact and space-saving
- + Low maintenance costs

ALM-WD ADSORPTION DRYER

The heat-regenerative ALM-WD adsorption dryer is the right solution for all uses requiring a constant pressure dew point of -40 °C.

At higher ratings in particular, heat-regenerative adsorption dryers are more efficient and most notably more cost effective to run than cold-regenerative ones because virtually no compressed air is lost as a result of aftercooling or regeneration of the desiccant.

This is because, with heat-regenerative adsorption dryers, the desiccant is not dried with compressed air but by a heating element, which is heated to 150 °C.

Advantages:

- Ideal positioning of heating elements in drying bed
- Optimum use of regenerative energy
- Low maintenance costs
- Simple installation/operation
- Constant pressure dew point

Design:

 $V_{nom} = 2000 \text{ m}^3/\text{h}$ Inlet temperature = 30 °C Operating overpressure = 10 bar

$$V_{corr} = \frac{V_{nom}}{f_p \cdot f_T}$$

$$V_{corr} = \frac{2000 \text{ m}^3/\text{h}}{1.37 \cdot 1} = 1460 \text{ m}^3/\text{h}$$

Calculated dryer size: ALM-WD 2200

ALM-WD							
ТҮРЕ	Nominal throughput at inlet ¹	Average controlled air flow – -40 °C	Width	Height	Depth	Weight	Connection
ALM-WD	m³/h	m³/h				kg	
280	245	5	760	2170	450	290	R1"
450	400	9	1000	2280	500	435	R1 1/2"
730	653	14	1050	2620	550	670	R1 1/2"
880	785	17	1200	2750	600	740	R2"
1200	1026	23	1250	2750	650	760	R2"
1500	1282	28	1400	3050	700	1450	DN80
2200	1916	42	1550	3050	800	1670	DN80
2500	2250	50	1650	3050	900	1900	DN80
3000	2670	58	1850	3175	950	2300	DN100
4000	3590	79	1950	3175	1050	3000	DN100
4800	4280	94	2000	3175	1100	3300	DN100

Correction factors for ALM-WD adsorption dryer													
Operating overpressure pü (bar)	4	5	6		8	9	10	11	12	13	14	15	16
Correction factor f _{pü}	0.63	0.75	0.88		1.12	1.15	1.37	on request					
Inlet temperature T (°C)	10	20	30	35	40	45	50						
Correction factor f_{T}	1	1	1		0.60	0.38	0.25						

¹Refers to intake status of 1 bar (abs) and 20 °C, 7 bar (overpressure) and 35 °C inlet temperature, pressure dew point -40 °C

Pressure dew point

-40 °C at 100% nominal load Nominal throughput 245 - 4280 m³/h

Operating pressure 4 - 16 bar (overpressure) Ambient temperature +5 °C to +50 °C

Efficient

heat regeneration

- + No fan or external blower
- + Simple installation and operation
- + Energy Management System (EMS)

Energy management system

Optional EMS

ACTIVE CARBON ADSORBER ALM-AC

The ALM-AC active carbon adsorber supplies absolutely oilfree, taste- and odour-neutral compressed air. The special active carbon ensures that oil vapour is adsorbed from the compressed air.

The ALM-AC active carbon adsorber guarantees:

- Freedom from oil with a residual oil content ≤0.003 mg/ m³ through high adsorption of oil vapour. Inlet requirements: DTP +3 °C.
- Active carbon life of around 10,000 operating hours.
- Complete operational reliability.
- Maximum performance, safety and quality.
- Constant efficiency.

Key data:

- Residual oil content: ≤ 0.003 mg/m³
- Volume flows: 70 9300 m³/h
- Operating pressure: 5 16 bar (overpressure)

Application

Industry

Nominal throughput

Operating pressure

(overpressure)

Ambient temperature

+2 to +45 °C

5 - 16 bar

70 - 9300 m³/h

• Ambient temperature: +2 to +45 °C

Design:

 $V_{norm} = 200 \text{ m}^3/\text{h}$ Inlet temperature = 30 °C Operating overpressure = 10 bar

$$V_{corr} = \frac{V_{nom}}{f_p \cdot f_T}$$

$$V_{\rm corr} = \frac{200 \text{ m}^3/\text{h}}{1.7 \cdot 1.17} = 101 \text{ m}^3/\text{h}$$

Calculated dryer size: ALM-AC 120

ALIVI-AL						
ТҮРЕ	Nominal throughput at inlet ¹	Width	Height	Depth	Weight	Connection
ALM-AC	m³/h					
75	70	350	1950	750	90	R1/2"
120	110	350	1950	750	110	R3/4"
170	160	350	1970	750	130	R3/4"
220	200	350	1980	750	160	R1"
320	300	550	1980	750	170	R1"
480	450	550	1990	750	215	R1 1/2"
690	650	550	1990	750	260	R11/2"
850	800	550	2000	750	330	R2"
1100	1000	899	2210	800	305	DN80
1300	1250	899	2500	800	340	DN80
1700	1600	1019	2380	960	325	DN80
2000	1900	1012	2380	1010	450	DN80
2400	2250	1077	2795	1010	480	DN100
2900	2700	1202	2830	1010	500	DN100
3800	3600	1202	2830	1010	520	DN100
5500	5150	1505	2830	1540	690	DN100
7500	7100	1565	2950	1540	960	DN150
9900	9300	1780	3265	1580	1150	DN150

¹Refers to intake status of 1 bar (abs) and 20 °C, 7 bar (overpressure) and 35 °C inlet temperature

lives Space-saving design ALMIG

Correction factors for ALM-AC adsorption dryer													
Operating overpressure pü (bar)	5	6		8	9	10	11	12	1				
Correction factor $f_{p\bar{u}}$	0.75	0.88		1.06	1.12	1.17	1.22	1.27	1.3				
Inlet temperature T (°C)	25	30	35	40	45	50	55	60					
Correction factor $f_{\rm T}$	3.1	1.7		0.57	0.33	0	0.11	0.061	I				

Long active carbon

- + Complete operational reliability

3	14	15	16
2	1.37	1.41	1.46

www.almig.com